Arduino Industrial 101 is an Evaluation board for Arduino 101 LGA module. The ATmega32u4 microcontroller is integrated in the baseboard. The module supports a Linux distribution based on OpenWRT named LininoOS. The board has built-in WiFi (IEEE 802.11b/g/n operations up to 150Mbps 1x1 2.4 GHz), 3 GPIOs (of which 2 can be used as PWM Outputs), 4 Analog Inputs, 1 USB, 1 Ethernet signal on pin headers and a built-in DC/DC converter. Check out the assembling guide and simply connect your board to a computer with a micro USB cable to get started.
NB: In some countries, it is prohibited to sell WiFi enabled devices without government approval. While waiting for proper certification, some local distributors are disabling WiFi functionality. Check with your dealer before purchasing a Industrial 101 if you believe you may live in such a country.
ARDUINO MICROPROCESSOR | |
---|---|
Processor |
Atheros AR9331 |
Architecture |
MIPS |
Operating Voltage |
3.3 V |
Flash Memory |
16 MB |
RAM |
64 MB DDR2 |
Clock Speed |
400 MHz |
WiFi |
802.11 b/g/n 2.4 GHz |
Ethernet |
802.3 10/100 Mbit/s (Exported on headers) |
USB |
2.0 Host (Exported on headers) |
ARDUINO MICROCONTROLLER | |
---|---|
Microcontroller |
ATmega32u4 |
Architecture |
AVR |
Operating Voltage |
5 V |
Flash memory |
32 KB |
SRAM |
2.5 KB |
Clock Speed |
16 MHz |
Analog I/O Pins |
12 (4 exported on header) |
EEPROM |
1 KB |
DC Current per I/O Pins |
40 mA |
It is recommended to power the board via the micro-USB connection with 5VDC.
If you are powering the board though the Vin pin, you must supply a regulated 5VDC. There is no on-board voltage regulator for higher voltages, which will damage the board.
The power pins are as follows:
The ATmega32u4 has 32 KB (with 4 KB used for the bootloader). It also has 2.5 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library). The memory on the AR9331 is not embedded inside the processor. The RAM and the storage memory are externally connected. The Industrial 101 has 64 MB of DDR2 RAM and 16 MB of flash memory. The flash memory is preloaded in factory with a Linux distribution based on OpenWrt called Linino OS. You can change the content of the factory image, such as when you install a program or when you change a configuration file. You can return to the factory configuration by pressing the "USER1" button for 30 seconds.
The Linino OS installation occupies around 9 MB of the 16 MB available of the internal flash memory. You can use a micro SD card (adding an external slot) if you need more disk space for installing applications.
It is not possible to access the I/O pins of the Atheros AR9331. All I/O lines are tied to the 32U4.Each of the 7 digital i/o pins on the Industrial 101 can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms.In addition, some pins have specialized functions:
There are 4 reset buttons with different functions on the board:
The Industrial 101 has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega32U4 provides a dedicated UART TTL (5V) serial communication. The 32U4 also allows for serial (CDC) communication over USB and appears as a virtual com port to software on the computer. The chip also acts as a full speed USB 2.0 device, using standard USB COM drivers. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB connection to the computer.
Digital pins 0 and 1 , not reported on final layout , are used for serial communication between the 32U4 and the AR9331. You can use to communication between the processors the Ciao library.
Arduino Ciao is an easy-to-use and powerful technology that enables Arduino sketches to communicate intuitively with the "outside World". It aims to simplify interaction between microcontroller and Linino OS, allowing a variety of connections with most common protocols, third-party services and social networks.
Ciao has been designed and developed to be modular and easily configurable. Its goal is to support several connectors capable of interacting with the system resources (filesystem, console, memory) and to communicate with the most common and useful protocols (XMPP, HTTP, WebSocket, COAP, etc..) and applications (Jabber, WeChat, Twitter, Facebook, etc.).
Ciao Library is a lightweight library that can be used inside sketches for MCU to send and receive data, via serial communication, in a simple and intuitive way.
A SoftwareSerial library allows for serial communication on any of the Industrial 101's digital pins.
The ATmega32U4 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus. For SPI communication, use the SPI library.
The Industrial 101 appears as a generic keyboard and mouse, and can be programmed to control these input devices using the Keyboard and Mouse classes.
The onboard Ethernet (you need the "Ethernet add-on" for example dogrj45) and WiFi interfaces are exposed directly to the AR9331 processor. To send and receive data through them, use the Bridge or Ciao library.
The Industrial 101 is prepared to add an USB host (for example the dogUSB) that you allow to connect peripherals like USB flash devices for additional storage, keyboards, or webcams. You may need to download and install additional software for these devices to work.
The Industrial 101 can be programmed with the Arduino software (download). Select "Arduino Industrial 101 from the Tools > Board menu (according to the microcontroller on your board).
The ATmega32U4 on the Arduino Industrial 101 comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the AVR109 protocol.
You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar;
Rather than requiring a physical press of the reset button before an upload, the Industrial 101 is designed in a way that allows it to be reset by software running on a connected computer. The reset is triggered when the Industrial 101's virtual (CDC) serial / COM port is opened at 1200 baud and then closed. When this happens, the processor will reset, breaking the USB connection to the computer (meaning that the virtual serial / COM port will disappear). After the processor resets, the bootloader starts, remaining active for about 8 seconds. The bootloader can also be initiated by pressing the reset button on the Industrial 101. Note that when the board first powers up, it will jump straight to the user sketch, if present, rather than initiating the bootloader.
Because of the way the Industrial 101 handles reset it's best to let the Arduino software try to initiate the reset before uploading, especially if you are in the habit of pressing the reset button before uploading on other boards. If the software can't reset the board you can always start the bootloader by pressing the reset button on the board.
The maximum length and width of the Industrial 101 PCB are 2.0 and 1.7 inches respectively, with the USB connector extending beyond the former dimension. Three screw holes allow the board to be attached to a surface or case.